PILE ENGINEERING & CONSTRUCTION

플랜트 /토목/건축 엔지니어링&건설 전문기업

"지진"에 안전한 대한민국!! 티쉐어건설이 함께 합니다.

Tech Share Construction Company

티쉐어건설은 창의적인 기술을 바탕으로 건설분야의 역량을 강화하고 있습니다. 건설의 가치를 높이고 고객을 최우선으로 생각하는 믿음의 기업으로 성장하겠습니다.

기본과 원칙을 기반으로 고객을 위한 최적의 공법, 최고의 품질 제공을 약속드립니다.

Contents

<mark>복합마이크로파일</mark> COMPOSITE MICROPILE

- 05 복합마이크로파일 소개
- 06 이중강관
- 07 확대강관
- 08 단일강관
- 09 주요자재
- 10 확대기초 결합부 내진성능 평가
- 11 확대강관 압축강도 평가
- 12 성능 및 경제성
- 13 시공 순서
- 14 적용 분야 및 주요실적

<mark>무용접마이크로파일</mark> NON-WELDING MICROPILE

- 17 공법 개요
- 18 성능평가
- 19 시공순서
- 20 공법 비교표
- 21 주요 실적

특허증 / 인증서

- 22 국내 특허 및 해외 특허
- 23 인증서 및 수상내역

"지진"에 안전한 대한민국!! 티쉐어건설이 함께 합니다.

복합 마이크로파일

COMPOSITE MICROPILE

COMPOSITE **MICROPILE**

복합마이크로파일(CMP)

소구경 파일의 새로운 패러다임 강관말뚝의 개념을 도입하여 휨성능, 전단성능을 향상시킨 고성능 소구경 내진말뚝

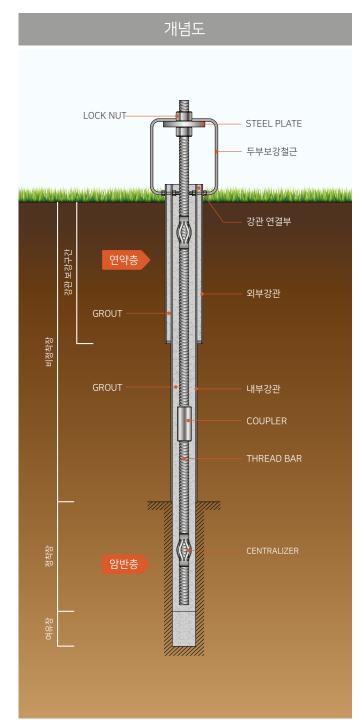
설계기준

교량하부구조 설계기준(KDS 24 14 50) 4.6.3 말뚝과 확대 기초의 결합부

교량 기초의 경우에는 강결합으로 설계하는 것을 원칙으로 한다.

말뚝과 확대기초의 결합부는 말뚝머리 부분에 작용하는 압축력, 인발력, 수평력 및 모멘트 등 모든 외력에 대해 저항할 수 있도록 설계한다. 철도설계기준(노반편, 2015) 11.8.3 말뚝과 확대 기초의 결합부

교량 기초의 경우에는 강결합으로 설계하는 것을 원칙으로 한다.


말뚝과 확대기초의 결합부는 말뚝머리 부분에 작용하는 압축력, 인발력, 수평력 및 모멘트 등 모든 외력에 대해 저항할 수 있도록 설계한다.

TYPE 1

이중강관 DOUBLE CASING

파일 상부에 이중강관을 적용하여 수평지지력을 향상시킨 신개념의 마이크로파일 공법

| 공법 개요

기술의 특징 F부보강 확대기초와 일체 거동으로 휨모멘트 저항성 우수 기중강관의 일체화 이중강관의 일체화 이중강관 · 휨성능, 전단성능, 수평지지력 극대화 · 내진성능 우수 작용 효과

• 파일 상부의 강성증대로 내진성능 600% 향상

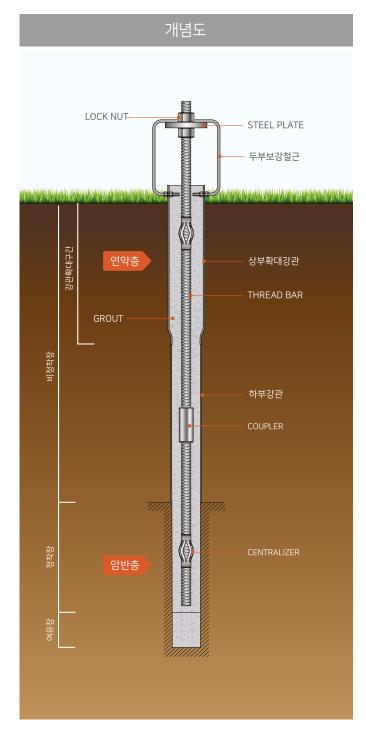
• 내진성능 향상으로 수량을 감소시킬 수 있어 공기단축 가능

• 시공수량 축소로 시공시 발생하는 탄소 및 유해물질 배출을

• 내진성능 향상으로 공사비 약 35% 절감

• 자재사용량 절감으로 <mark>탄소배출 저감 효과</mark>

저감 시킬 수 있는 공법


06 | T.SHARE CONSTRUCTION

TYPE 2

확대강관 EXPANSION CASING

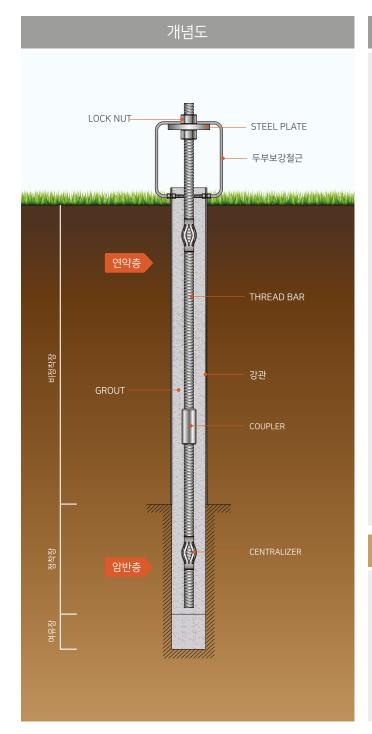
파일 상부에 확대강관을 적용하여 수평지지력을 향상시킨 신개념의 마이크로파일 공법

| 공법 개요

기술의 특징 두부보강 철근 확대기초와 일체 거동으로 휨모멘트 저항성 우수 철근결합 NUT 확대강관 강관과 철근의 · 휨성능, 전단성능, 일체화 수평지지력 극대화 · 내진성능 우수

- 파일 상부의 강성증대로 내진성능 310% 향상
- 내진성능 향상으로 <mark>공사비 절감</mark>
- 내진성능 향상으로 수량을 감소시킬 수 있어 <mark>공기단축</mark> 가능

적용 효과


- 자재사용량 절감으로 <mark>탄소배출 저감 효과</mark>
- 시공수량 축소로 시공시 발생하는 <mark>탄소 및 유해물질 배출을</mark> 저감 시킬 수 있는 공법

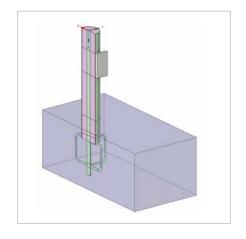
TYPE 3

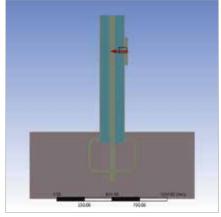
단일강관 SINGLE CASING

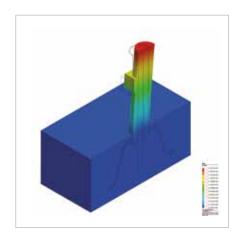
강관의 외경 및 두께를 증대시켜 수평지지력을 향상시킨 신개념의 마이크로파일공법

공법 개요

적용 효과

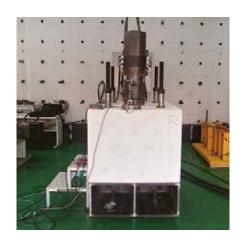

- 파일 상부의 강성증대로 내진성능 310% 향상
- 내진성능 향상으로 <mark>공사비 절감</mark>
- 내진성능 향상으로 수량을 감소시킬 수 있어 공기단축 가능
- 자재사용량 절감으로 <mark>탄소배출 저감 효과</mark>
- 시공수량 축소로 시공시 발생하는 <mark>탄소 및 유해물질 배출을 저감</mark> 시킬 수 있는 공법


주요 자재


구분		제원						
		강종 (N/mm²)	직경 (mm)	단면적 (mm²	1	항복하중 Fy(ton)	d I	허용하중 Fa(ton)
			50	1,962	2	100.0		57.1
THREAD BAR		SS500	65 3,316		5	169.0		96.6
			75	75 4,415		225.0		128.6
				!	Ø165(4.	.5t)		96.6 128.6 128.6 mm 50 300 60 30 mm 50 70 80 160 80 mm 50 124 0 290 48
STEEL PIPE	Man	SS275		Ø216	6(4.5t/6.	.0t/8.2t)		
01221112	AND SOLVER	33273		Ø2	267(6.0t	/9.3t)		
				Ø3.	18(7.0t/	'10.3t)		
			A					mm
	Version of the N				BAR Φ	75	65	50
STEEL PLATE		m -			А	450	350	300
STEEL PLATE			$\Psi \top$		В	85	75	60
					t	35	30	30
				+ 1				
								mm
			((())) 	규격 (Φ)	75	65	
LOCK NUT		~~~~~			길이 (L)	90	80	
		L	D	\rightarrow	외경 (D)	120	100	80
				규격 (Φ)	75	65		
COUPLER) 	길이 (L)	180	180	
COOLEEN					의경 (D)	120	100	
		L	D D	_				
		. L		_				
	原 加	L'	Ľ		규격 (Φ)	75	65	
CENTRALIZES	(1)/(1)		1	\nearrow	А	140	140	
CENTRALIZER			W A		L	290	290	
	$\mathcal{W}\mathcal{W}$				L'	48	48	
			'		W	80	80	60
REINFORCEMENT STEEL BAR								

확대기초 결합부 내진성능 평가

3차원 구조해석



3차원 해석모델

내진성능평가

2019년 1차 성능평가

2022년 2차 성능평가

2023년 3차 성능평가

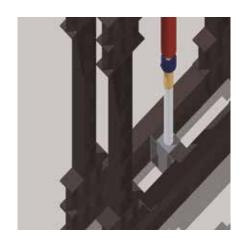
성능 평가 결과

복합마이크로파일은 최대하중이 발생한 이후에도 지속적인 강도 유지가 가능하고 연성도가 높아 내진성능이 우수한 것으로 평가됨

TEST REPORT(시험성적서) : TBK-2023-010449 한국화학융합시험연구원(KTR) 시험 인증

상부확대강관 압축강도 평가

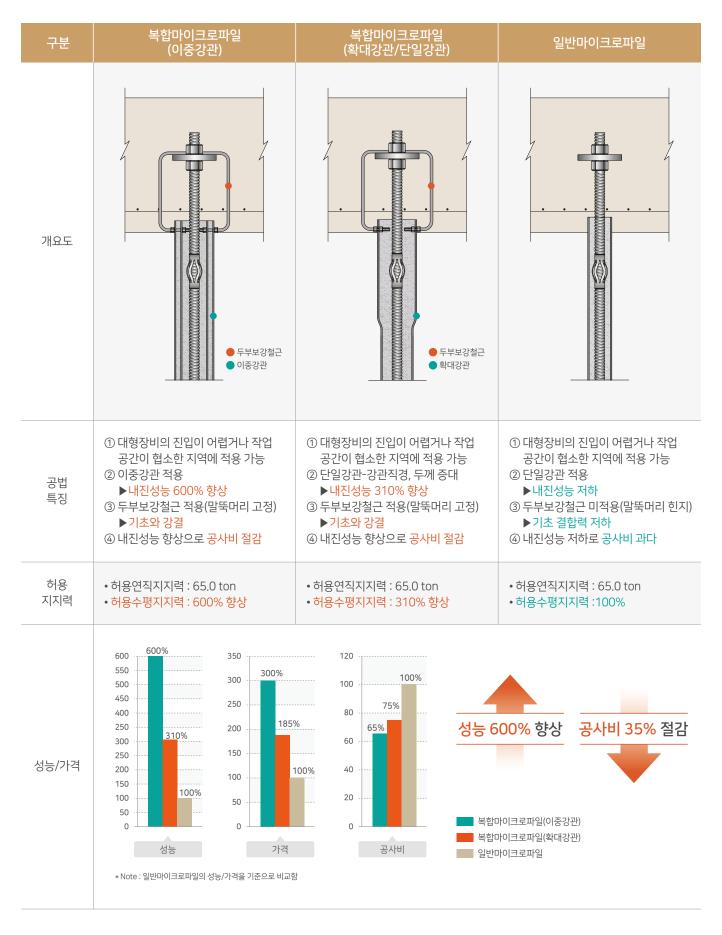
3차원 구조해석



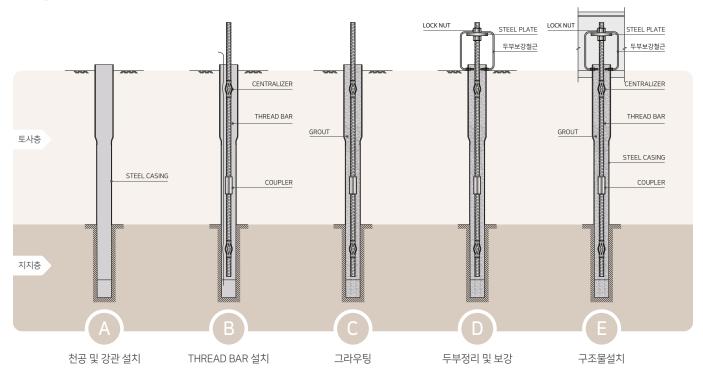
VonMises 응력 및 변형률

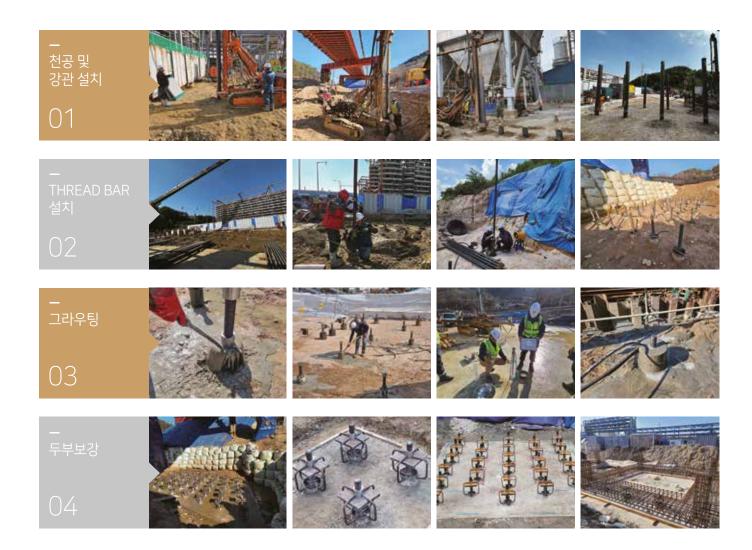
| 압축강도평가

상부확대강관의 압축강도 평가


성능 평가 결과

실험체의 최대 축압축강도는 설계 압축강도의 125% 이상으로 압축성능이 우수한 것으로 평가됨


TEST REPORT(시험성적서) : TBK-2023-010448 한국화학융합시험연구원(KTR) 시험 인증



성능 및 경제성

시공 순서

적용 분야

플랜트 분야

교량 분야

토목 / 건축 / 항만 분야

주요 실적

플랜트 분야

번호	공사명	구조물	발주처	비고
1	대구친환경에너지 개선공사	Piperack	한국지역난방공사	
2	청주친환경에너지 개선공사	Piperack	한국지역난방공사	
3	여수광양항만공사 Piperack 기초공사	Piperack	여수광양항만공사	
4	여수산단 공용파이프랙 4단계 구축사업	Piperack	한국산업단지공단	
5	금호석유화학 SCR STRUCTURE 공사	Equip. Structure	금호석유화학	
6	LG화학 CNT3 Project	Equip. Structure	LG화학	
7	LG화학 PBAT 제품개발 Project	건축물	LG화학	
8	남해화학 황산공장 650# 배압스팀터빈 발전기 설치공사	Equipment	남해화학	

9	대산 현대오일뱅크 HDO 3, 9호기 탈황설비 건설공사	Equipment	현대오일뱅크	
10	한화솔루션 HPC Project	Pipe Sleeper	한화솔루션	
11	GS칼텍스 PP공정 회수공정 열교환기 변경공사	Equipment	GS칼텍스	
12	대산 현대오일뱅크 LBO증설공사	Equipment	현대오일뱅크	
13	한화에너지(군산) G2 연료전환 Project	Equipment	한화에너지	

교량 분야

번호	공사명	구조물	발주처	
1	영동선 봉화~봉성간 철도교량 신설공사	철도교	국가철도공단	
2	고속국도 제400호선 양평~이천간 건설공사	차도교	한국도로공사	
3	거제도 연초댐 공도교 건설공사	차도교	한국수자원공사	
4	동일로(서울시계)확장공사 중 교대확장공사	차도교	의정부시	
5	화명2구역 주택재개발사업정비공사 중 라멘교기초공사	차도교	주택재개발사업조합	
6	용산역-드래곤시티호텔 공중보행교량 설치공사	보도교	서울특별시	
7	고양덕은 도시개발사업 중 보도육교	보도교	한국토지주택공사	
8	인천 루원시티 도시개발사업 단지조성공사 중 보도육교C교 기초	보도교	한국토지주택공사	
9	창원 석전동 인도교 건설공사	보도교	창원시	
10	익산시 마동근린공원 조성사업	보도교	익산시	
11	여의교 샛강 보도육교 설치공사	보도교	서울특별시	
12	고양 풍동2지구 도시기반시설 조성공사	보도교	포스코이앤씨	

토목 / 건축 / 항만 분야

번호	공사명	구조물	발주처	
1	경원선 월계~녹천간 본선 옹벽공사	옹벽	한국철도시설공단	
2	보은 말티재 전망대 기초	전망대	한국농어촌공사	
3	남양주 별내지구 중앙119구조대 헬기장 기초공사	헬기장	한국토지주택공사	
4	개포동 3단지 공동구 설치공사	공동구	개포동 조합	
5	동탄C16BL 옹벽기초공사	옹벽	HN	
6	화정중 승강기 교체공사	Elevator Pit	고양시 교육청	
7	봉담읍 수영리 648-3오피스텔 신축공사	건축물	SH산업개발	
8	신현초등학교 방음벽공사	방음벽	중랑구청	

"지진"에 안전한 대한민국!! 티쉐어건설이 함께 합니다.

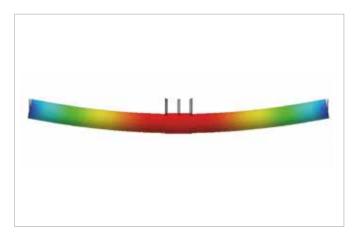
무용접 마이크로파일

NON-WELDING MICROPILE

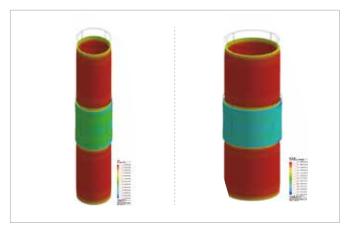

NON-WELDING MICROPILE

무용접 마이크로파일(NMP)

마이크로 파일의 새로운 패러다임


Weldless Casing Coupler를 적용하여 완전한 무용접 시공이 가능한 마이크로파일공법

공법 개요



무용접 마이크로파일(NMP) 성능평가

3차원 구조해석

휨인장강도 해석

압축강도 해석

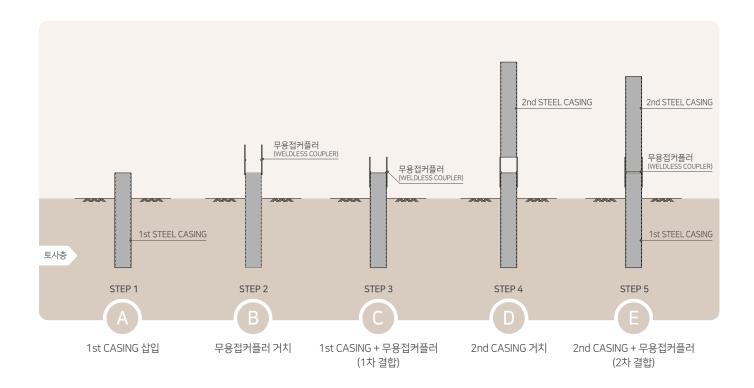
| 휨인장강도/압축강도 평가

휨인장강도 평가

압축강도 평가

성능 평가 결과

휨인장강도평가 : 실험체의 모멘트강도가 설계모멘트 이상으로 휨모멘트 성능이 우수한 것으로 평가됨


압축강도평가: 실험체의 최대 축압축강도는 설계 압축강도의 125% 이상으로

압축성능이 우수한 것으로 평가됨

TEST REPORT(시험성적서) : TBK-2023-010382 한국화학융합시험연구원(KTR) 시험 인증

시공 순서

공법 비교표

일반 마이크로파일 무용접 마이크로파일 공법사진 1) 제1케이싱을 지반에 삽입 1) 제1케이싱을 지반에 삽입 2) 무용접 커플러(Weldless Coupler) 거치 및 2) 제1케이싱 위에 제2케이싱 거치 결합방법 제1케이싱과 결합 3) 불꽃방지막설치 및 화기감시자 배치 3) 제2케이싱 결합 및 삽입 4) 제1케이싱과 제2케이싱 용접 5) 제2케이싱 삽입 결합시간 1분 15분 1) 특허공법으로 특허권자 실행 1) 일반적인 공법으로 누구나 실행 가능 2) 무용접으로 케이싱 연결부 손상 방지 2) 케이싱 타격 시 용접 부위가 손상될 수 있음 3) 파일의 수직도 향상 3) 화재/폭발 위험성 큼 4) 화재/폭발 위험성 없음 4) 화재 방지를 위한 안전 비용 과다 장·단점 5) 공기단축가능 5) 화재 방지를 위한 공정이 추가되어 공기가 길어짐 6) ESG와 연계하여 **탄소 및 유해물질 배출을** 저감시킬 수 있는 친환경 공법 1) 화재, 폭발의 위험이 있는 현장 2) 공기가 급한 현장 적용분야 3) 전석층 등이 존재해 용접부위 손상이 예상되는 현장 4) 반도체 공장, 화공 플랜트, 정유 플랜트

무용접 커플러 시험 성적서

무용접 커플러 소재의 항복강도가 강관의 항복강도 이상으로 충분한 안전성을 확보한 것으로 평가됨

TEST REPORT(시험성적서):

TAK-2023-112962 TAK-2023-112963

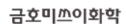
TAK-2023-135738

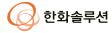
한국화학융합시험연구원(KTR) 시험 인증

주요 실적

구분	무용접 마이크로파일	시공일
1	금호석유화학 고무2공장(여수)	2023. 07
2	SK에너지공장(울산)	2023. 08
3	DL C4공장(여수)	2023. 08
4	LG화학 용성공장(여수)	2023. 08
5	다이킨첨단머티리얼즈코리아 공장(당진)	2023. 09
6	GS칼텍스1공장(여수)	2023. 09
7	YNCC4공장(여수)	2023. 10
8	롯데케미컬3공장(여수)	2023. 10
9	BASF(여수)	2023. 10
10	금호폴리캠1공장(여수)	2023. 10
11	덕양 어프로티움(대산)	2023. 11
12	LG화학 VCM공장(대산)	2023. 12
13	한국산업단지공단 4단계 PIPERACK 증설공사(여수)	2023. 12
14	한화솔루션공장(여수)	2024. 02
15	롯데케미컬3공장(여수)	2024. 02
16	SK ON(서산)	2024. 03
17	LG화학 NCC(여수)	2024. 03
18	무림P&P(울산)	2024.04
19	롯데케미컬3공장(여수)	2024. 04
20	세종고등학교 내진보강공사	2024.05
21	리뉴어스 연천공장 스팀터빈발전사업	2024.07
22	경기농업기술원 내진보강공사	2024.10
23	LG화학 용성1 사외관로 PIPERACK 증단	2025.02

주요 고객사





▮ 지식재산권

특허 (국내)

특허 (해외)

디자이

상표권

도면

구조검토서

| 인증서 및 수상내역

벤처기업

직무발명우수기업

연구개발전담부서

우수특허대상

ISO 9001:2015

ISO 14001:2015

ISO 45001:2018

경기도 고양시 일산서구 고양대로 315, 스마트건설지원센터 2센터 201호 (대화동, 한국건설기술연구원)

201(2F), Smart Construction Support Center, KICT, 315, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do, Republic of Korea

E-mail: t-share@tshare.co.kr | website: www.tshare.co.kr